관심있는 주제/통계

PCA(Principal Component Analysis)

Lynn123 2019. 5. 21. 10:30
반응형

PCA: 주성분분석, 차원축소와 변수추출 기법으로 사용되는 기법으로 데이터의 분산을 최대한 보존하면서 서로 직교하는 축을 찾아 고차원 공간의 표본들을 선형 연관성이 없는 저차원 공간으로 변환하는 기법이다.

 

Q. PCA의 주성분이 곧 eigenvalue 라고 봐도 되는가??

 

 

참고

https://darkpgmr.tistory.com/110

 

[선형대수학 #6] 주성분분석(PCA)의 이해와 활용

주성분 분석, 영어로는 PCA(Principal Component Analysis). 주성분 분석(PCA)은 사람들에게 비교적 널리 알려져 있는 방법으로서, 다른 블로그, 카페 등에 이와 관련된 소개글 또한 굉장히 많다. 그래도 기존에..

darkpgmr.tistory.com

https://ratsgo.github.io/machine%20learning/2017/04/24/PCA/

 

주성분분석(Principal Component Analysis) · ratsgo's blog

이번 글에서는 차원축소(dimensionality reduction)와 변수추출(feature extraction) 기법으로 널리 쓰이고 있는 주성분분석(Principal Component Analysis)에 대해 살펴보도록 하겠습니다. 이번 글은 고려대 강필성 교수님과 역시 같은 대학의 김성범 교수님 강의를 정리했음을 먼저 밝힙니다. 그럼 시작하겠습니다. 기법 개요 PCA는 데이터의 분산(variance)을 최대한 보존하면서 서로 직교하는 새 기저(축)

ratsgo.github.io

 

반응형

'관심있는 주제 > 통계' 카테고리의 다른 글

표본분포  (0) 2019.04.16
EDA(탐색적 데이터 분석)  (0) 2019.04.13